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Propagation in Rectangular Waveguides with Arbitrary

Internal and External Media

J$2RGEN BACH ANDERSEN, SVEND BERNTSEN, ANI) PAUL 13ALSGAARD

.4bstracf-The propagation characteristics of electromagnetic
waves in a rectangular waveguide of a homogeneous medium embed-

ded in a ditTerent medium have been found approximately. The total
field is assumed to consist of four crossing plane waves intercon-

nected at the boundaries by reflection matrices. The method is

more accurate than other approximate techniques. New results are

presented for tunnel propagation and attenuation of degenerate

modes in metallic waveguides.

I. INTRODUCTION

THE rectangular waveguide is one of the oldest trans-

mission lines, so it is rather surprising that the subject

has not been thoroughly dealt with under all possible

circumstances. There are good reasons for this, though,

since all components of the electric and magnetic fields

are coupled to each other except for the nonrealizable case

of perfect conductivity y in the walls. For nearly all parts

of the electromagnetic spectrum there is now a consider-

able interest in having more exact solutions for wave

propagation in the general rectangular waveguide, i.e.,

with arbitrary internal and external media.

In the microwave region the dielectric surface wave-

guide or image line has been known for many years, but

there has been a renewed interest recently in the optical

version of this line [1], [15], the infrared version [3], and

the millimeter or submillimeter version [4], [5]. At lower

frequencies there is a need for a better understanding of

the mode structure in tunnel propagation, although con-

siderable progress in this area has recently been made [7],

[8]. Except for two numerical solutions [2], [6] all the

theoretical solutions have been restricted to the scalar

(and solvable) two-dimensional case or slight modifica-

tions of it.

The exact field distribution in the two-dimensional case

(parallel plate waveguide or dielectric slab) may be

decomposed into two plane waves

AI exp ( –jlix) exp ( –jlc.z)

and

A2 exp (+jkzz) exp ( –j%gz)

where z is along the waveguide axis, and x is in the trans-
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verse direction. The two waves are connected at the

boundaries through the reflection coefficients [16]. The

rectangular waveguide may be viewed approximately as

two slab waveguides, in which case at least four crossing

plane waves are needed. We know that this simple field

distribution is only an approximation, since additional

corner fields, in general, will be needed to satisfy the

boundary conditions. It is the purpose of this paper to

present an approximate solution to the three-dimensional

vector problem by invoking the reflection coefficients for

the walls and assuming that only four crossing plane

waves are present. The depolarization when a wave is

reflected from a wall is taken into account. The system of

equations turns out to be overdetermined and is solved in

a least squares sense. The accuracy is determined by com-

paring the results with Schlosser and Unger [6] and some

new results are presented for metallic waveguides and

tunnels in Iossy dielectrics.

II. REFLECTION FROM INFINITE

IPLANE INTERFACE

The reflection from a plane interface between two

different media may easily be determhed on the basis of

the two Fresnel reflection coefficients R– and R+. The

derivation and notation are similar to those of Beckmann

[9]. R-is usually referred to as the reflection coefficient

for horizontal polarization, and R+ is the corresponding

coefficient for vertical polarization; the signs refer to the

fact that R- tends towards minus one and R+ towards plus

one when the conductivity of the reflecting medium tends

towards infinity.

In general, a wave changes polarization when reflected.

It is by taking this depolarization into account that the

present theory claims improved accuracy.

Referring to Fig. 1, we assume a wave with wave vector

Li incident on a plane interface with normal h. The wave

vector has three components (lc.,lcv,k~) k which may be

arbitrary complex numbers satisfying the wave equation

kzz + lcvz+ k~ .= 1. (1)

The time factor is exp (jot) so the wave propagates as

exp ( —j~i. P).

The electric field of the wave is bound to lie in a plane

normal to ~i, so in this plane we choose two orthogonal

basis vectors, t- and ;+. We are free to choose one of them,

and for the sake of convenience we assume that 2– lies
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Fig, 1,

in the z-z plane, so
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~’

Incident (ki) and reflected (~,) waves from a plane surface
given by the normal%

Usually the sign of the square root is chosen in this way:

(2)

and
. A—2~~=lciXei. (3)

Note that the basis system varies with the direction. .
of lci. Two more unit vectors are introduced, t~ and ~i,

where ii is a vector in the intersection between the surface

and the phase front
.

‘i3Xllli
;6=

I?txi,l
(4)

Im (lc22– k12sin20) 112<0 (9)

corresponding to a decay away from the interface of the

transmitted wave. However, there is no reason why leaky

waves should not be present; in fact, they are known to

exist on dielectric slabs and cylinders, and we shall see

later that they no~mally occur in tun,nel propagation.

The direction k, of the reflected wave is determined

simply by hi and r?, and unit vectors .??-,$,+,?r,@.are defined

in the same way as in (2)–(5).

Let us now assume an incident wave ~; = Er2i- +

Ei_%~. The reflected wave E, = E,-f$.– + Er~~r~ is con-

nected with i7i through a reflection matrix ~

and ~; is normal to i!; and ~~ ill, = F*E;

@ = hi x ;i. (5) ‘
where the following expression for

The component of 1? in the ?i direction is reflected with applying the preceding analysis:

{

~ = R-t” ;F–;” ;i- + R~@v*8V-@i.;i–!R–;” &-~* Zi+ •F R+ijT. $.–~i ● $i+.---A-..-. -l------ .-- .--------- X-----------: -...a.-----x-------------------------------
‘-~R-t “$v+t“;i+ -F R+@r● ;P+(ji;i+ }R–t .Z,+t.zi– ~ R+&.~r+~i “e% !

(lo)

~ may be found by

(11)

R– and the component in the 46 direction with R+, where

R- =
h cos 9 – (k22 – lc12sin2 e)112
h cos 0 + (k22 – k12sin20) 112

(6)

R+ = 1%22Cos6 – lc~(le22– k12sin2 f?) 112

lC22 COS 0 + lcI (1%22 – lC12 sin2 @ 112 “
(7)

kl, lc2are the wavenumbers in the media corresponding to

the incident and the transmitted waves, respectively. The

angle 0 is the angle of incidence, defined by the relationship

f30se= “—?i.ib. (8)

It is in general a complex number.

The choice of branch cut in the square roots in R– and

R+ must be made on the basis of physical arguments.

III. MODAL EQUATIONS FOR RECTANGULAR

WAVEGUIDES

The basic assumption of this paper is that the mode

pattern (the field configuration which propagates without

change of shape) in a rectangular waveguide may be

closely approximated by the sum of four plane waves,
these four waves being interconnected at the boundaries

by the reflection matrices of Section II. The assumption

will be justified by comparison with known results where

available.

Thus we assume that the total electric field inside the

waveguide is given by
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~ti~ = &em (–jl&@) + & exp (–j&oF)

+ & exp (–jF,.?) + ~, exp ( –jk,.?) (12)

where

El = (kz,kv,k,)kl

i$s = (lcz, -iiv,ks)kl

ii = ( –ks, –kw)k,) kl

ii, = ( –ks,ku,kg)k, (13)

as indicated in Fig, 2. The ~ t vector is a two-dimensional

vector with unknown elements, in a basis-vector system

belonging to ~i as indicated in the previous section. The

projections (k*,kV) are unknown, but k, is given by

kz2= 1 _ ka2_ kJ. (14)

The boundary con~tions are fulfilled in the following

way on side 1. At and A: are re~ected waves corresponding

to the incident waves Al and Ag, respectively. Using (11)

we get for y = b

22 exp ( –jkzklz + jkVk@ – jk,klz)

= ~u.~1 exp ( –jkcklz – jkvklb – jk,klz) (15)

or

~z = ~11exp ( –j2kukd) .~l (16)

where ??~j is the reflection matrix from side i with ~j

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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where a = exp ( —j2kskla), @ = exp ( —j2kVklb), and ~ is

the unit matrix. ~ is a matrix with ten rows and two

columns. This is the general case with four different media

on the fou~ sides. In the special case of only one external

medium, B can be simplified considerably as follows.

A. Reelection from Horizontal Walls

Owing to the special choice of unit vectors in (2) and

(3) I’lj and I’si are especially simple, as

COS6h = kg (25)

for both side 1 and side 3. By inserting the proper incidence

vectors in (11) it is found that

II
&-O

FH = 714 = F32 = F3s = Ffi = (26)

O Rh+-

(the subscript h refers to horizontal walls).

B. Reelection from Vertical Walls

In this case the angle of incidence is given by

cos00= ht. (27)

for both walls. IBy inserting the proper incidence vectors

in (11) it is found that

(28)

F24 = l!42 = FeT (29)

where T stands for transposed, v for vertical, and

Using (-19),(20),(21) all ~’s may be expressed in

terms of Aa, ending with the following matrix equation:

.[(k? + k;) (k?+ kzt)]--l. (30)

Using these results ~ may be simplified as

==
B=

with
Fig, 2. Geometry of waveguide and ~ components of

bssic wave vectors.
the four

(31)

(32)
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It is only in very special cases that (32) has exact

solutions; in general, the right-hand side will be different

from zero. A case which hasanontrivial solution is that

of the perfectly conducting walls, where R+ = +1,
R-= –1,

(33)
(34)

(33)

so ~ = O for a = @ = 1, independently of &. This leads,

of course, to the well-known relations

for the standard, uncoupled waveguide modes. Another

limiting case with exact solutions is the two-dimensional

one, which may be achieved by having perfectly conduct-

ing (electric or magnetic) vertical walls,

1 – L3(Rh-)2 = O (37)

1 – B(l?h+)z = o (38)

which correspond to the standard dispersion equations

for slab propagation.

In all other cases we must accept an approximate

solution, which we take to be the one that n-itirnizes the

norm of ~. Thm k. and lc~ are vatied until I B.~ lz/1 ~ 12

is minimal. It is easily shown that

15”11’ - .= .=,-‘+AB~~ A~ Xzni.(lC.j?CV)
IA12 = .

(39)

where + denotes the Hermitian conjugate and Amin is the

minimal =real nonnegative eigenvalue of the Hermitian

matrix M = &” ~. The equality= holds when ~ is the

appropriate eigenvector. Since M is a 2 X 2 matrix,

~~i. maybe found directly as

~mi. = i(~ll + 7?222 – ( (’??211– ?n22)2+4I7)21212)’/2) (40)

where

The solution is then simply found by minimizing h. in

by variation of the real and imaginary parts of lcs and k..

In this way we have found the set of four plane waves

which satisfy the boundary conditions with least squared

error. Furthermore, the magnitude of i~in is a measure

of the error, or rather

()
1/2

d= $ (42)

may be taken as a measure of the rms error in (15) – (23).

The minimum of l~i. as a function of lc#U has been found

by using the minimization method of Powell [10], but

in fact any nonlinear optimization method could be used.

Once k.@U are determined, k= is given by (1). The method’

is fast since no matrix inversion is involved and only the

minimization of an analytically given function is required.

We intend to prove that the constructed approximate

solution of (16)–(23) satisfying (19), (20), ~nd (21)

exactly, is actually the optimal solution. Let A i be any

given set of fields, and let A~ denote the difference between

the left- and right-hand sides of (16) –(23). It can be

proved that

where kin is the function given in (39), and where the

equality holds only for the A‘s constructed by the method

above. This means that the constructed solution minimizes

the violation of the boundary conditions.

IV. SOME EXAMPLES

A. Dielectric Surface Waveguides

The most accurate calculations have been made by

Schlosser and Unger [6], who match the fields numerically

along boundaries between rectangular sections around the

guide. The results are very accurate, but the method is

time consuming. Schlosser and Unger therefore proposed

a simpler theory, which essentially consists of solving the

two-dimensional equations (37) and (38). A similar,

simple method has been devised by Marcatili [1], who

has also indicated an approximate analytical solution of

the two-dimensional equations. The present method is

more accurate than the two-dimensional methods, and

simpler and faster than the point-matching schemes.

A comparison with the exact results of Schlosser and

Unger is made in Table I. The example concerns the

fundamental EH@ mode in a dielectric with e, = 2.5

and b/a = 2.5, A is the relative error in percent, and

d is the mean error according to (42). It is rather surprising

that a d of 0.5 corresponds to an error of only 2 percent

in B./?co. Notice on the other hand that the increase of

the error with decreasing frequency is natural since the

simple set of plane waves cannot explain the complicated

field behavior between interacting dielectric corners. The

approximate theory of Schlosser and Unger (not shown in

Table I) yields an error of 5 percent for Ic,a = 1.50, and

the analytical theory of Marcatili has an error of 11

percent for the same case. It should be noted that Mar-

catili’s analytical, closed-form expression is very easy to

use, and is excellent for rough estimates.

TABLE I
.—

Schlosser The present

and theory

Unger

k. a 13z/ho #3z/ko A% d

1.50 1.7196426 1.097409 -2.0 0.47

2.00 1.2407761 1.23S036 -0.2 0.33

3.00 1.3833421 1.383347 -0 0.17

4.00 1.452385 1.452428 +0.003 0.10

5.00 1.4905564 1.490574 +0.001 0.07
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B. Metallic Waveguides

There is no exact theory for waveguide attenuation due

toimperfectly conducting walls. Usually, by the classical

method [17] the power loss is found by assuming that the

surface current distribution is not disturbed by the non-

zero value of the surface impedance. This is rather in-

accurate for degenerate modes (TE~n and TM~.; m,n # O)

in a rectangular waveguide. Van Bladel [11] and Robson

[12] have found approximate expressions for the propaga-

tion characteristics of the new modes. They both assume

that the absolute value of the surface impedance is small.

Their results are not accurate close to putoff, as their

theories predict an infinite value of attenuation at cutoff.

In the method presented here there is no assumption of

a small surface impedance, and the attenuation at cutoff

is finite, but in general it is difficult to say which method

is the ,most accurate. A comparison between the various

theories is given in Fig. 3, which concerns a copper guide

with a = 2.5 cm, b = 1.25 cm, and the TM21 and TE21

modes. The names TM and TE are strictly valid in the

perfectly conducting case only, since both modes are of

a hybrid character. It is noted that for j/j. > 2 the

present method and those by van Bladel and Robson give

similar results, while there is some discrepancy close to

cutoff .

Another case is shown in Fig. 4 for the TM,, and the

TEII modes. In the case of m or n equal to zero the modes

are not degenerate and this theory gives results which are

identical to the results achieved by the classical method.

C. Tunnel Propagation

In tunnel propagation we consider the case where the

internal medium is air and the external medium a lossy

dielectric. There has recently been considerable interest

in mine tunnel propagation, where the experimental

results of Goddard [13] have indicated that it is necessary

to go into the microwave region to obtain sufficiently

small attenuations. The experimental results of Goddard

have been well explained by Emslie et al. [7], using the

two-dimensional dispersion equations [(37) and (38) ]

asymptotically. It can easily be shown that the attenuation

falls off like the frequency squared, in good agreement

with experimental results. Mahmoud and Wait [8] have

used a ray formulation where a source is introduced, and

where the total fields are found by summing over a large

number of images. In this way, the attenuation of the

least attenuated mode can be found by looking at the field

at a great distance from the source.

Fig. 5 shows some results typical of the lowest order

modes in a tunnel. The asymptotic decay rate mentioned

above is valid from about 300 MHz for the 11 modes.
It is natural that the horizontally polarized wave is the

least attenuated asymptotically, since R+ is effective at

the smallest wall and R– at the largest; I R– I is always

closer to unity than I R+ 1. There is no sharp cutoff but

instead a crossover around 100 MHz so that at lower

frequencies, the vertically polarized wave is the least

damped.

0,3

0,2”

0,1”

2
1.

3
‘/fc

Fig. 3. Attenuation of degenerate nwdes in copper waveguide.
TEz1,TMzI: @ classical method; @ present method; and @)
references [11], [12].
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Fig. 4. Attenuation of degenerate modes in copper waveguide.
TEu,TM1l: @ clcssical method; and @ present methcd.
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Fig. 5. Attenuation of lowest order modes in coal mine tunnel.
lc:leaky in horizontal direction. Zu:leaky in vertical direction.

The points marked 1. and lV indicate another interesting

transition. la means that the wave in the external medium

is leaky (grows exponentially horizontally away from the

tunnel), lU means leaky in the vertical direction. If the

external medium had been lossless, the waves would have

been leaky for all frequencies due to refraction. When

there is some finite conductivity, however, the waves will

always decay exponentially transversely when the fre-

quency is sufficiently high. On the other hand, it is noted

from F%. 5 that at the lower frequencies we have leaky

waves, indicating that over some region in the medium

the waves are growing exponentially, overcoming the

losses. Essentially, this means that the tunnel acts as

a very efficient radiator, a property which could be useful

for communication through the rock.

This transverse propagation property depends heavily

on the conductivity, while the attenuation along the tunnel

is almost independent of the wall conductivity y as long as

it is small. This latter point has been noted by Glaser

[14] for circular tunnels.
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