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Propagation in Rectangular Waveguides with Arbitrary

Internal and External Media

JORGEN BACH ANDERSEN, SVEND BERNTSEN, axo PAUL DALSGAARD

Abstract—The propagation characteristics of electromagnetic
waves in a rectangular waveguide of a homogeneous medium embed-
ded in a different medium have been found approximately. The total
field is gssumed to consist of four crossing plane waves intercon-
nected at the boundaries by reflection matrices. The method is
more accurate than other approximate techniques. New results are
presented for tunnel propagation and attenuation of degenerate
modes in metallic waveguides.

I. INTRODUCTION

HE rectangular waveguide is one of the oldest trans-

mission lines, 8o it is rather surprising that the subject
has not been thoroughly dealt with under all possible
circumstances. There are good reasons for this, though,
since all components of the electric and magnetic fields
are coupled to each other except for the nonrealizable case
of perfect conduectivity in the walls. For nearly all parts
of the electromagnetic spectrum there is now a consider-
able interest in having more exact solutions for wave
propagation in the general rectangular waveguide, i.e.,
with arbitrary internal and external media.

In the microwave region the dielectric surface wave-
guide or image line has been known for many years, but
there has been a renewed interest recently in the optical
version of this line [17, [15], the infrared version [3], and
the millimeter or submillimeter version [4], [5]. At lower
frequencies there is a need for a better understanding of
the mode structure in tunnel propagation, although con-
siderable progress in this area has recently been made [7],
[8]. Except for two numerical solutions [27], [6] all the
theoretical solutions have been restricted to the scalar
(and solvable) two-dimensional case or slight modifica-
tions of it.

The exact field distribution in the two-dimensional case
(parallel plate waveguide or dielectric slab) may be
decomposed into two plane waves

Ay exp (—gk.x) exp (—jk.2)
and
A exp (+ikazw) exp (—jk.2)
where z is along the waveguide axis, and z is in the trans-
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verse direction. The two waves are connected at the
boundaries through the reflection coefficients [167]. The
rectangular waveguide may be viewed approximately as
two slab waveguides, in which case at least four crossing
plane waves are needed. We know that this simple field
distribution is only an approximation, since additional
corner fields, in general, will be needed to satisfy the
boundary conditions. It is the purpose of this paper to
present an approximate solution to the three-dimensional
vector problem by invoking the reflection coefficients for
the walls and assuming that only four crossing plane
waves are present. The depolarization when a wave is
reflected from a wall is taken into account. The system of
equations turns out to be overdetermined and is solved in
a least squares sense. The accuracy is determined by com-
paring the results with Schlosser and Unger [6] and some
new results are presented for metallic waveguides and
tunnels in lossy dielectrics.

II. REFLECTION FROM INFINITE
PLANE INTERFACE

The reflection from a plane interface between two
different media may easily be determined on the basis of
the two Fresnel reflection coefficients B~ and R+. The
derivation and notation are similar to those of Beckmann
[9]. R~ is usually referred to as the reflection coefficient
for horizontal polarization, and R* is the corresponding
coefficient for vertical polarization; the signs refer to the
fact that R~ tends towards minus one and R* towards plus
one when the conductivity of the reflecting medium tends
towards infinity.

In general, a wave changes polarization when reflected.
It is by taking this depolarization into account that the
present theory claims improved accuracy.

Referring to Fig. 1, we assume a wave with wave vector
: incident on a plane interface with normal 4. The wave
vector has three components (k.,ky,,k.)k which may be
arbitrary complex numbers satisfying the wave equation

(1)

The time factor is exp (jwt) so the wave propagates as
exp (—jk:-7).

The electric field of the wave is bound to lie in a plane
normal to %;, so in this plane we choose two orthogonal
basis vectors, é— and &+. We are free to choose one of them,
and for the sake of convenience we assume that €~ lies

ka2 + k2 4 k2 = L.
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Incident (%:) and reflected (£.) waves from a plane surface

given by the normal 4.

Fig. 1.
in the 2-z plane, so
A g X k’
e~ = — = (2)
|9 X ks |
and
et = ki x 6. (3)

Note that the basis system varies with the direction
of ki Two more unit vectors are introduced, #; and s
where #; is a vector in the intersection between the surface
and the phase front

. A X ke
li= "7 4
T % Fe ] @
and §; is normal to #; and %
Gi = ki % 1. (5)

The component of £ in the #; direction is reflected with

=l

Usually the sign of the square root is chosen in this way:
‘ Im (ke — ke sin?8)12 < 0 (9)

corresponding to a decay away from the interface of the
transmitted wave. However, there is no reason why leaky
waves should not be present; in fact, they are known to
exist on dielectric slabs and cylinders, and we shall see
later that they normally occur in tunnel propagatlon

The direction &, of the reflected wave is determined
simply by % and 4, and unit véctors 8, &ty b0y are defined
in the same way asin (2)~(5).

Let us now assume an incident wave E; = Ei 6~ +
Eteit. The reflected wave E, = E,~¢~ + E,*é,* is con-
nected with E; through a reflection matrix T
where the following expression for T may be found by
applying the preceding analysis:

R—t{-81t-8; 4+ R+q,-&;

. {R"f-'éff 61 + R+Qr'er Qz ez 5R Z
2D Vg5 BT

R~ and the component in the §; direction with B+, where

_kicos 8 — (ke? — Fki?sin? 9)12
k1cos 0 + (ke? — kq? sin? 9) 12

(6)

ke? cos § — k1(k22 — k12 sin? 0) 12
]C22 cos 0 + k1 (k22 - ](}12 sin2 0) yz®

+ =

()

ky, ke are the wavenumbers in the media corresponding to
the incident and the transmitted waves, respectively. The
angle 6 is the angle of incidence, defined by the relationship

(8)

cos 0 = —fi ok,

It is in general a complex number.
The choice of branch cut in the square roots in B— and
R* must be made on the basis of physical arguments.

r z 3+ + R+Q‘r € Q'L'ez }
a8t

e~
T 11
€ + R+qr‘er Q'Lea ( )

~

where § = #; = 4,

III. MODAL EQUATIONS FOR RECTANGULAR
WAVEGUIDES

The basic assumption of this paper is that the mode
pattern (the field configuration which propagates without
change of shape) in a rectangular waveguide may be
closely approximated by the sum of four plane waves,
these four waves being interconnected at the boundaries
by the reflection matrices of Section II. The assumption
will be justified by comparison with known results where
available,

Thus we assume that the total electric field inside the
waveguide is given by
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By = -'-‘il exp (“.7751"7') + Az exp (".7’327-')

+ As exp (—jks+P) + Ayexp (—jke-?)  (12)
where
by = (koshushos) by
fr = (kay—leykes) b
kg = (—kay—kysks) lor
ko = (—kaoyks) Fer (13)

as indicated in Fig. 2. The A; vector is a two-dimensional
vector with unknown elements, in a basis-vector system
belonging to k. as indicated in the previous section. The
projections (k,,k,) are unknown, but k, is given by

k2 =1— k2 — k2 (14)

The boundary conditions are fulfilled in the following
way on side 1. A; and A4; are reflected waves corresponding
to the incident waves A; and A4, respectively. Using (11)
weget fory =b

Az exp (—jkokst + o — jhJerz)
= Ty-A;exp (—jhdeax — jhed — jhdrz) (15)
or ‘
Ay = Tyexp (—j2kyheid) -4, (16)

where T; is the reflection matrix from side ¢ with £;
incident. Similarly,

As = T exp (—j2kykib) - A, (17)
Al = F24'fi4 (18)
Ay = T4, (19)
Ay =Ty 4, (20)
Ay = Ty 4y (21)
Ay = Ty exp (—j2%kia) - Ay (22)
Ay = Ty exp (—j2k.kia) - Ay, (23)

Using (19),(20),(21) all A’s may be expressed in
terms of As;, ending with the following matrix equation:

// , %/ﬁ d// earors <
7 //////

Medium I E, , o,

/
b: Side V \F\z Side /
2 4
/ ‘h 4 /
/

Side 3

//////a////,*‘

Fig. 2. Geometry of waveguide and z—y components of the four
basic wave vectors.
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(T — BTTa) T )
U — pTu-Ta
Bedy= | TuFu— Tl tedicd (20

Z-—j - aF42'I__123

( ﬁ - a?ﬂ ¢ f24) * f%

where o = exp (—j2kk:a), 8 = exp (—j2k,kib), and U is
the unit matrix. B is a matrix with ten rows and two
columns. This is the general case with four different media
on the four sides. In the special case of only one external
medium, B can be simplified considerably as follows.

A. Reflection from Horizontal Walls

Owing to the special choice of unit vectors in (2) and
(3) Ty and Ty; are especially simple, as
cos O = ky, (25)

for both side 1 and side 3. By inserting the proper incidence
vectors in (11) it is found that

Tn=Tu=Tp=Ts=1T)= (26)
0 R./"
(the subseript h refers to horizontal walls).
B. Reflection from Vertical Walls
In this case the angle of incidence is given by
cos B, = k, (27)

for both walls. By inserting the proper incidence vectors
in (11) it is found that

(28)
(29)
where T stands for transposed, v for vertical, and

_ Rk: — Rk — (Ro 4 R kokk,
T, =

(Rq;_ + Rv+) kxkykz R’a—kz2 - Ra)+ka;2kll2
'[(kz2 + kyz) (kzz + kw2) :I--l~

Using these results B may be simplified as

( (ﬁ - thZ) fa)

(30)

I
=
=
&

]
=

~
i
:

(31)

with

(32)
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It is only in very special cases that (32) has exact
solutions; in general, the right-hand side will be different
from zero. A case which Has a nontrivial solution is that
of the perfectly conducting walls, where R+ = +1,
R = —1,

Te=10 (33)
LT, = Tl = =0 (34)
FT, =TT =10 (35)

s0oB =0fora= B = 1, independently of A;. This leads,

of course, to the well-known relations
kb = ma (36)

for the standard, uncoupled waveguide modes. Another
limiting case with exact solutions is the two-dimensional
one, which may be achieved by having perfectly conduct-
ing (electric or magnetic) vertical walls,

l—ﬁ(Rh_2=0
1 — B(l?h+ 2 —

kikia = nr

(37)
(38)

which correspond to the standard dispersion equations
for slab propagation.

In all other cases we must accept an approximate
solution, which we take to be the one that minimizes the
norm of B. Thus k, and &, are vatied until | B-4 2/| A |2
is minimal. It is easily shown that

| B-A I2 B A+.B+.B.4
A2~ A+.4

2 )\min(kw;ky) (39>
where *+ denotes the Hermitian conjugate and Agin is the
minimal _real nonnegative eigenvalue of the Hermitian
matrix M = B*+-B. The equality_holds when 4 is the
appropriate eigenvector. Since M is a 2 X 2 matrix,
Amin May be found directly as

Amin = 3(mu + mas — ((mn — ma)? + 4 | my 1)) (40)
where
M =B+B = (41)
mp® My

The solution is then simply found by minimizing Ayin
by variation of the real and imaginary parts of k, and k,.
In this way we have found the set of four plane waves
which satisfy the boundary conditions with least squared
error. Furthermore, the magnitude of Amin is & measure
of the error, or rather

N\1/2
()
8

may be taken as a measure of the rms error in (15)-(23).
The minimum of Anis as a function of k,,k, has been found
by using the minimization method of Powell [107, but
in fact any nonlinear optimization method could be used.
Once k,k, are determined, %, is given by (1). The method
is fast since no matrix inversion is involved and only the

(42)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JULY 1975

minimization of an analytically given function is required.

We intend to prove that the constructed approximate
solution of (16)-—(23) satisfying (19), (20), and (21)
exactly, is actually the optimal solution. Let A; be any
given set of fields, and let A; denote the difference between
the left- and right-hand sides of (16)—(23). It can be
proved that

8
Z I Zi P/I A3 12 Z )\min(k:c:ky)

=1

(43)

where Amin is the function given in (39), and where the
equality holds only for the 4’s constructed by the method
above. This means that the constructed solution minimizes
the violation of the boundary conditions.

1IV. SOME EXAMPLES

A. Drelectric Surface Waveguides

The most accurate calculations have been made by
Schlosser and Unger [ 6], who match the fields numerically
along boundaries between rectangular sections around the
guide. The results are very accurate, but the method is
time consuming. Schlosser and Unger therefore proposed
a simpler theory, which essentially consists of solving the
two-dimensional equations (37) and (38). A similar,
simple method has been devised by Mareatili [17, who
has also indicated an approximate analytical solution of
the two-dimensional equations. The present method is
more accurate than the two-dimensional methods, and
simpler and faster than the point-matching schemes.
A comparison with the exact results of Schlosser and
Unger is made in Table I. The example concerns the
fundamental EH;# mode in a dielectric with ¢ = 2.5
and b/a = 2.5, A is the relative error in percent, and
d is the mean error according to (42). It is rather surprising
that a d of 0.5 corresponds to an error of only 2 percent
in B./ko. Notice on the other hand that the increase of
the error with decreasing frequency is natural since the
simple set of plane waves cannot explain the complicated
field behavior between interacting dielectric corners. The
approximate theory of Schlosser and Unger (not shown in
Table I) yields an error of 5 percent for kea = 1.50, and
the analytical theory of Mareatili has an error of 11
percent for the same case. It should be noted that Mar-
catili’s analytical, closed-form expression is very easy to
use, and is excellent for rough estimates.

TABLE I
Schlosser The present
and theory
Unger
koa ﬁz/ko ﬁz/k0 A% d
1.50 1.1196426 1.097409 -2.0 0.47
2,00 1.2407761 1.238036 -0.2 0.33
3.00 1.3833421 1.383341 ~ 0 0.17
4.00 1.452385 1.452428 +0,003 0.10
5.00 1.4905564 1.490574 +0.,001 0.07
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B. Metallic Waveguides

There is no exact theory for waveguide attenuation due
to imperfectly conducting walls. Usually, by the classical
method [177] the power loss is found by assuming that the
surface current distribution is not disturbed by the non-
zero value of the surface impedance. This is rather in-
accurate for degenerate modes (TE, and TM,; m,n = 0)
in a rectangular waveguide. Van Bladel [117] and Robson
[127 have found approximate expressions for the propaga-
tion characteristics of the new modes. They both assume
that the absolute value of the surface impedance is small.
Their results are not accurate close to cutoff, as their
theories predict an infinite value of attenuation at cutoff.
In the method presented here there is no assumption of
a small surface impedance, and the attenuation at cutoff
is finite, but in general it is difficult to say which method
is the most accurate. A comparison between the various
theories is given in Fig. 3, which concerns a copper guide
with @ = 2.5 ¢cm, b = 1.25 em, and the TMy and TEy
modes. The names TM and TE are strictly valid in the
perfectly conducting case only, since both modes are of
a hybrid character. It is noted that for f/f, > 2 the
present method and those by van Bladel and Robson give
similar results, while there is some discrepancy close to
cutoff.

Another case is shown in Fig. 4 for the TM;; and the
TEy modes. In the case of m or n equal to zero the modes
are not degenerate and this theory gives results which are
identical to the results achieved by the classical method.

C. Tunnel Propagation

In tunnel propagation we consider the case where the
internal medium is air and the external medium a lossy
dielectric. There has recently been considerable interest
in mine tunnel propagation, where the experimental
results of Goddard [13] have indicated that it is necessary
to go into the microwave region to obtain sufficiently
small attenuations. The experimental results of Goddard
have been well explained by Emslie et al. [7], using the
two-dimensional dispersion equations [(37) and (38)]]
asymptotically. It can easily be shown that the attenuation
falls off like the frequency squared, in good agreement
with experimental results. Mahmoud and Wait [8] have
used a ray formulation where a source is introduced, and
where the total fields are found by summing over a large
number of images. In this way, the attenuation of the
least attenuated mode can be found by looking at the field
at a great distance from the source.

Fig. 5 shows some results typical of the lowest order
modes in a tunnel. The asymptotic decay rate mentioned
above is valid from about 300 MHz for the 11 modes.

It is natural that the horizontally polarized wave is the
least attenuated asymptotically, since R* is effective at
the smallest wall and R~ at the largest; | R~ | is always
closer to unity than | R* [. There is no sharp cutoff but
instead a crossover around 100 MHz so that at lower
frequencies . the vertically polarized wave is the least
damped.
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Fig. 3. Attenuation of degenerate modes in copper waveguide.
TEy, TMau: @ classical method; @ present method; and
references [11],[12].
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Fig. 4. Attenuation of degenerate modes in copper waveguide.
TEy;, TMy: @ classical method; and @ present method.
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Fig. 5. Attenuation of lowest order modes in coal mine tunnel.
1. leaky in horizontal direction. I,: leaky in vertical direction.

The points marked I, and I, indicate another interesting
transition. I, means that the wave in the external medium
is leaky (grows exponentially horizontally away from the
tunnel), I, means leaky in the vertical direction. If the
external medium had been lossless, the waves would have
been leaky for all frequencies due to refraction. When
there is some finite conductivity, however, the waves will
always decay exponentially transversely when the fre-
quency is sufficiently high. On the other hand, it is noted
from Fig. 5 that at the lower frequencies we have leaky
waves, indicating that over some region in the medium
the waves are growing exponentially, overcoming the
losses. Essentially, this means that the tunnel acts as

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JULY 1975

a very efficient radiator, a property which could be useful
for communication through the rock.

This transverse propagation property depends heavily
on the conductivity, while the attenuation along the tunnel
is almost independent of the wall conductivity as long as
it is small. This latter point has been noted by Glaser
[14] for circular tunnels.
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